The falsity of a conjecture concerning the percolation threshold

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 162887
(http://iopscience.iop.org/0305-4470/16/12/036)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:27

Please note that terms and conditions apply.

COMMENT

The falsity of a conjecture concerning the percolation threshold

A B Harris ${ }^{\dagger}$
Schlumberger-Doll Research, P O Box 307, Ridgefield, CT 06877, USA

Received 9 March 1983

Abstract

A recent conjecture relating the critical concentration for bond percolation and a lattice Green function is shown to be false.

Recently Sahimi et al (1983) have conjectured that the critical concentration $p_{c}^{(d)}$ for nearest-neighbour bond percolation on the d-dimensional hypercubic lattice is exactly equal to the corresponding lattice Green function $G_{0}^{(d)}$. The latter is given by

$$
\begin{equation*}
G_{0}^{(d)}=\frac{1}{N} \sum_{q} \frac{1}{2 d\left(1-\gamma_{q}\right)}, \tag{1}
\end{equation*}
$$

where the sum is taken over the first Brillouin zone consisting of N points and

$$
\begin{equation*}
\gamma_{q}=\left(\cos q_{1} a+\cos q_{2} a+\ldots+\cos q_{d} a\right) / d, \tag{2}
\end{equation*}
$$

where q_{n} is the nth component of the d-dimensional lattice vector q. Here we show that this conjecture is false.

To do this we simply compare the expansion of the two quantities in powers of d^{-1} for large d. From the work of Gaunt and Ruskin (1978) we have

$$
\begin{equation*}
p_{c}^{(d)}=(1 / 2 d)\left[1+1 / 2 d+7 / 8 d^{2}+\ldots\right] \tag{3}
\end{equation*}
$$

The expansion of $G_{0}^{(d)}$ takes the form

$$
\begin{equation*}
G_{0}^{(d)}=\frac{1}{2 d N} \sum_{q} \sum_{n=0}^{\infty}\left(\gamma_{q}\right)^{2 n} \tag{4}
\end{equation*}
$$

Keeping terms up to $n=2$ we have
$G_{0}^{(d)}=\frac{1}{2 d}\left(1+\frac{1}{2 d}+\frac{6 d-3}{8 d^{3}}+\mathrm{O}\left(d^{-3}\right)\right)=\frac{1}{2 d}\left(1+\frac{1}{2 d}+\frac{3}{4 d^{2}}+\mathrm{O}\left(d^{-3}\right)\right)$.
Comparing equations (3) and (5) we obtain

$$
p_{c}^{(d)}-G_{0}^{(d)}=1 / 16 d^{3}+\mathrm{O}\left(d^{-4}\right) .
$$

Thus $p_{c}^{(d)}$ and $G_{0}^{(d)}$ are definitely not exactly equal in general dimension. For $d=2$, in fact, $G_{0}^{(d)}$ is infinite, whereas $p_{c}^{(d)}$ is finite.

I would like to thank J Koplik for pointing out this problem.

References

Gaunt D S and Ruskin H 1978 J. Phys. A: Math. Gen. 11 1369-80
Sahimi M, Hughes B D, Sćriven L E and Davis H T 1983 J. Phys. A: Math. Gen. 16 L67-72

